Home Home > 2017 > 07
Sign up | Login

Deprecation notice: openSUSE Lizards user blog platform is deprecated, and will remain read only for the time being. Learn more...

Archive for July, 2017

Highlights of YaST development sprint 39

July 31st, 2017 by

openSUSE 42.3 is out! Do you need some reading material while you wait for the download of the new release to finish? Don’t worry, we have the solution right here – another YaST team report. 😉

Several products in one installation medium

Obviously, we stopped adding new features to SLE12-SP3 and Leap 42.3 some days ago, because everything needed to be tested properly before the release. So now we are mainly looking into the future. And one of the plans for that future regarding SUSE Linux Enterprise (SLE) is offering several products packed in a single installation medium.

SUSE offers several mission-specific products based on SLE and, so far, every product needs to be installed from its own medium (usually a DVD or a virtual image). So if you use SLE Server, SLE Desktop and SLE Server for SAP, you have to have three DVDs which is a bit cumbersome.

After some discussions about the technical implementation details, we created a first prototype of the installer with an extra dialog that allows to select one of the detected products and continues the installation from there according to the installation workflow of the chosen product. It is still a proof of concept, but we can at least share screenshots showing how it looks for the time being.

The new product selection screen

So far, there are no plans to use the new feature in openSUSE, mainly because the project does not deliver separate mission-specific products in the same way than SUSE does with SUSE Linux Enterprise.

Storage reimplementation: numbers after repatriating the Expert Partitioner

In the Sprint 36 report we presented the rewrite of the YaST Partitioner and we have been informing about its evolution in subsequent reports. We told you back then that we decided to split it in a separate yast2-partitioner package. But time has proved that decision to have too many drawbacks so we decided to bring the Partitioner back home, to yast2-storage-ng. As part of the process, we got rid of an old previous prototype of the Partitioner that was still lying in the yast2-storage-ng repository and some code that was there just to support that old prototype.

You may be asking why is all that relevant. It is because that means the repository (and thus the package) is finally approaching the final structure it will have when released into Tumbleweed. And that implies that all the systems we use to automatically measure the quality and reliability of our repositories are now providing trustworthy results… as trustworthy as automatic quality evaluations can be.

And according to those tools:

  • 93% of the code in yast2-storage-ng is covered with automated unit tests in addition to openQA (this number is expected to raise in close future as we polish the new Partitioner),
  • Code Climate reports a code quality GPA of 3.91 out of a possible maximum of 4
  • and 76% of all the classes, modules and functions, including the internal ones, are properly documented (with that developer documentation being available here, by the way).

If you wonder about the numbers for the old codebase we want to replace, its code quality is 0.94 and only a 31% of it is covered by unit tests. A perfect example of legacy code.

Storage reimplementation: Btrfs subvolumes in AutoYaST

As reported in previous posts, the new storage stack can already process AutoYaST profiles including partitions, LVM and MD arrays, but some details are still missing. The first of those details we wanted to address was the definition and creation of subvolumes in a Btrfs file-system.

Now it works according to the official documentation – both syntaxes for the <subvolumes> section are supported, it never creates subvolumes that would be shadowed by any other mounted file-system and it uses the list in control.xml as fallback for the root partition if Btrfs is used but subvolumes are not specified.

All that, as usual in the re-implemented stack, with fully tested and documented code.

Btrfs subvolumes support in AutoYaST

Storage reimplementation: handle multipath I/O in the proposal

In the previous report we showed you how the support for Multipath I/O looked at the library level, which usually means just geeky graphs. During this sprint, we have taught the installer to use that new library feature, so we now have real screenshots to show!

During the installation, now multipath hardware is detected and the user is asked for activation.

Popup for activating Multipath I/O

If the user agrees, the installer will never use the individual disk devices to propose a partitioning layout and it will not offer them as an option during the guided setup. The installer always works on the final (compound) multipath device, proposing the correct names for the partitions and so on (which, being a devicemapper device, follows a
different pattern when compared to raw devices).

Suggested partitioning with multipath

The resulting system is still not fully bootable because yast2-bootloader has still not been adapted to this scenario. Very likely, something for the upcoming sprint, so stay tuned.

Support for Ruby 2.4

The world changes every day and we are always adapting YaST to remain shiny. The 2.4 version of Ruby is about to land in openSUSE Tumbleweed and is expected to be the default Ruby for SUSE Linux Enterprise 15 and openSUSE Leap 15. We found that some of the YaST packages were not fully ready for this new Ruby, so it was time for some tweaking.

After dealing with quite some details too technical and boring for this blog (but feel free to ask if you want the gory bits), YaST is shining again in Factory, which means we are no longer blocking the adoption of Ruby 2.4 in Tumbleweed.

Add-on Creator and Product Creator

As our team keeps always developing new features, solving bugs, and receiving feedback, we always evaluate our priorities and product. Sometimes, during this evaluation, we see that some YaST modules do not bring enough value or do not shine enough as part of our standard package.

After some evaluation, we come to announce that the modules Add-on Creator and Product Creator will no longer be part of YaST. These packages use Kiwi as backend and we have high competition on UI sides – SUSE Studio and Open Build Service. So it no longer makes sense to have these packages and we recommend for users of these modules to use one of the alternatives or Kiwi directly if you already have an XML definition file for Kiwi.

Adapting YaST to accept 12 digits Service Request Number

As Service Request Numbers can be now composed of 11 or 12 digits, instead of only 11 digits as before, we had to adapt YaST to handle this change. YaST module Support can now accept 11 or 12 digit service request numbers. We implemented such a change for all products dating back from SLE 10 SP3 until the most recent SUSE Linux versions. Updates with this change will be soon released.

Network Setup in the 1st Stage of Autoinstallation

The YaST installation used to have two stages, separated by a reboot. Starting with SLE 12 and openSUSE Leap 42.1 we have eliminated the
second stage. But it was still needed for AutoYaST, controlled by the setting

<profile><general><mode><second_stage>true | false</...>

We have fixed those parts of the networking setup and now you can explicitly set AutoYaST to not use a second stage anymore.

User settings in AutoYaST

An issue that we have found out is that GDM has problems with the system when different users have the same UIDs. If it happens, GDM does not start properly. As a solution, we decided that either UIDs will be defined in the AutoYaST configuration file for ALL users or this tag will not be used at all for ALL users since a mix of both can result into duplicate UIDs.

And we just keep YaSTing!

We hope you liked our report as much as we loved to build all of that. We’ll continue YaSTing so we can reach you again in two weeks with much more cool stuff to show.

By now, enjoy your openSUSE 42.3 and all the cool features that came with it!

Increase the thread/process limit for Chrome and Chromium to prevent “unable to create process” errors

July 25th, 2017 by

Browsers like Chrome, Chromium and Mozilla Firefox have moved to running tabs in separate threads and processes, to increase performance and responsiveness and to reduce the effects of crashes in one tab.

Occasionally, this exhausts the default limit on the amount of processes and threads that a user can have running.

Determine the maximum number of processes and threads in a user session:

$ ulimit -u
1200

The SUSE defaults are configured in /etc/security/limits.conf:

# harden against fork-bombs
* hard nproc 1700
* soft nproc 1200
root hard nproc 3000
root soft nproc 1850

In the above, * the catch-all for all users.

To raise the limit for a particular user, you can either edit /etc/security/limits.conf or create a new file /etc/security/limits.d/nproc.conf. Here is an example for /etc/security/limits.d/nproc.conf raising the limit for the user jdoe to 8k/16k threads and processes:

jdoe soft nproc 8192
jdoe hard nproc 16384

If you want to do that for a whole group, use the @ prefix:

@powerusers soft nproc 8192
@powerusers hard nproc 16384

In either case, this change is effective only for the next shell or login session.

Highlights of YaST development sprint 38

July 14th, 2017 by

Here we go again with a new report from the YaST trenches. This time with the storage reimplementation as the clear star of the show.

Storage reimplementation: the proposal adapts, you succeed

As we have announced in our previous sprints and as you probably already know, the YaST team is working hard to rewrite the whole storage stack on time for SLE15 and openSUSE Leap 15. As part of this reimplementation we have designed a brand new storage proposal that automagically offers the user the best combination of partitions and LVM volumes based on the current configuration of the system and the user preferences.

The storage proposal in action

When we are working with very small disks or with special technologies like DASD (which doesn’t accept more than three partitions by device), the storage proposal might not be able to generate a valid initial proposal honoring the initial requirements of the product (e.g. creating a separate home partition and enabling btrfs snapshots for the root partition in the openSUSE Leap case). Now the proposal is not limited to fail when it is not possible to satisfy the default product requirements. Before giving up, the new system looks for alternatives, like discarding the separate home partition or disabling snapshots. Moreover, now the proposal is able to automatically adjust the size requirements not only for root, but also for swap and home. And, of course, the guided setup continues there for fine tuning the proposal settings.

Desktop selection improvements

As our usual readers also know, we recently introduced a more fair desktop selection screen for openSUSE, both Leap 42.3 and Tumbleweed. We used part of the latest sprint to implement some feedback we gathered about the wording and behavior of that dialog.

Revamped desktop selection screen

That feedback gathering included some discussions on how to make user experience nicer after selecting one of the user interfaces available through the “custom” option. As a result, the awesome openSUSE crew created a new mechanism for selecting the default window manager on each graphical login, so YaST can delegate the details to the maintainers of those alternative interfaces.

How everything works now? Glad you asked. 🙂

If the user select KDE or GNOME in the YaST dialog, /etc/sysconfig/windowmanager is configured to point to that desktop by default. If the “custom” option is selected, then YaST does not enforce any interface in that file and the new mechanism comes into play. It relies in the default.desktop file, which defines the default window manager and can be managed by the common update-alternatives workflow. Meaning it can be easily tweaked by the package maintainers and by the users, specially since YaST includes a nice module for managing alternatives.

Storage reimplementation: improvements in the expert partitioner

Although, as explained above, we keep improving the storage automatic proposal to support more and more situations, we cannot ignore that flexibility and adaptability have always been two of the flagships of (open)SUSE. And one of the most prominent examples is the YaST Expert Partitioner.

As detailed in our report of the sprint 36, we have been rewriting that powerful Swiss Army knife using the new storage stack but keeping the same user interface and functionality. So far, the new implementation was only able to display information about the existing partitions, LVM systems and MD RAIDs. But now we added many options to create, edit and delete partitions.

Using the expert partitioner during installation

It is still a work in progress because the number of possibilities offered by the YaST Partitioner is sometimes overwhelming and implementing them all takes time, but it’s progressing nicely.

Beside the improvements in the Partitioner itself, we also worked on its integration in the installation workflow. Now the Expert Partitioner can be used to refine the schema automatically proposed by the installer. As a bonus, the behavior of the “abort” and “finish” buttons has been improved in relation to the Expert Partitioner currently available in (open)SUSE, which historically shows a usability inconsistency there compared to the rest of the installation process.

Fixed Automatic Patch Installation

In both SLE and openSUSE Leap, the online updates can be installed either manually or automatically at some regular intervals. For the automatic installation we provide the yast2-online-update-configuration package which provides a cron job script and an YaST module for configuring it (hint: it is not installed by default, you might give it a try, maybe it is something “new” for you).

Configuring online updates via YaST

You can configure how often the patches should be installed or filter the patch categories in the YaST module, but we got a bug report saying that when multiple patch categories are selected only one is actually used.

It turned out to be a trivial mistake in the cron job and we fixed it for SLE12-SP2 and Leap 42.2, as well as for the upcoming SLE12-SP3 and Leap 42.3. So if you use this module and want to use the category filter then it’s recommended to upgrade the package.

Storage reimplementation: many steps forward in the AutoYaST integration

And going back to our new storage stack, we keep working to integrate it better with other parts of YaST, specially AutoYaST. During this sprint we polished some rough edges and we added support for MD RAID. With all that, now is possible to automatically setup a system based on an AutoYaST profile containing any combination of partitions, LVM systems and MD arrays, including encryption at any of the levels.

AutoYaST summary of actions on partitions, MD RAID and  LVM

But the relation of AutoYaST with the system works in both directions. Apart from being able to install a system based on an AutoYaST profile, it also offers the interface to export the current system configuration, including the storage layout, to a profile in order to reproduce the system later. During this sprint we also ported that logic to rely on the new storage layer.

It was harder than it sounds, due to the need of keeping the backwards-compatibility with several behaviors that have been introduced along the AutoYaST history to adapt to several specific situations. On the bright side, the new code is easier to follow, includes behavior-driven automated tests (RSpec) and contains information about the rationale of each decision… which in some cases required some archaeology.

Storage reimplementation: fixed bootloader proposal in S/390 and PowerPC

Another part of YaST we are constantly working to integrate better with the new storage stack is yast2-bootloader. Although the new storage system was already able to correctly setup a valid disk layout for most situations and architectures (each one with it’s own requirements for booting), our bootloader module is still not fully compatible with the new system in all those scenarios.

During this sprint, we adapted it to ensure all the combinations suggested by the new storage stack (partitions, LVM, encryption and so on) are correctly covered by YaST2-Bootloader. As a result, we can already say that our testing ISO images are fully installable in any x86_64, PowerPC and S/390 system by just clicking “next” a few times. And we have automated integration tests (a separate openQA instance) to ensure the resulting system boots just fine.

UDEV device id on PowerPC

We know some of our readers enjoy our more technical posts and like to lurk into the kitchen to see how we deal with all kind of surprises maintaining a complex tool like YaST. Today’s chapter in that regard started with a bug report about the bootloader being installed in the wrong device name (/dev/vda instead of /dev/vdb) in an emulated PowerPC machine in openQA.

After a lot of investigation and with help from our PowerPC expert, we found the culprit, that turned out to be an emulator quirk. The next couple of paragraphs may be interesting or daunting, depending how much virtualization and PowerPC jargon you know. Be warned.

On POWER, the PReP partition containing the bootloader has no unique identifier other than the serial number of the disk on which it created. QEMU virtualization does not provide any disk serial number when the user does not explicitly specify one. This means that the PReP partition in QEMU installation does not have any unique identification and the partition name may change when a disk is added or removed from the virtual machine or the storage configuration otherwise changes. This may lead to system errors related to bootloader installation and updates.

It is recommended to assign a unique serial number to each disk in a QEMU virtual machine on POWER when it is expected the storage configuration of the virtual machine may change. Otherwise, there is nothing YaST or any other tool running within the virtual machine can do to avoid the problems. So this time we only did the investigation part, with the fix coming from the openQA side, which was improved to explicitly set serial numbers when needed.

Storage reimplementation: better support for advanced scenarios

As exposed above, our StorageNG testing image already works in all the supported architectures and in scenarios combining plain partitions, LVM, RAID and encryption in any way. But there are even more situations and technologies currently supported by YaST that we need to incorporate into the new stack.

First of all, we used this sprint to add Multipath I/O support to the new libstorage. Now it can also be combined with all the other mentioned technologies (like having an LVM system on top of an encrypted multipath device), although the storage proposal still needs to be adapted to play nicely with preexisting multipath setups.

As usual with the library stuff, the best “screenshot” we have to offer is one of its geeky autogenerated graphs.

A multipath layout in libstorage-ng

Another scenario that goes beyond the most regular use cases is installing the system into a network storage device, instead of a local hard disk. Now, the new storage system can report whether a root filesystem via a network is used. When that happens, YaST sets the network interfaces with the start mode nfsroot, which is used to avoid interface shutdown and, therefore, the unavailability of the system.

That’s all, folks!

Once again, we omitted the boring parts about bugfixing (with yast2-ntp-client being the star in that regard) and similar stuff. We hope you enjoyed the report and we hope to reach you again in two weeks. Meanwhile…

Have a lot of fun testing the Leap 42.3 pre-releases and reporting bugs!

Highlights of YaST development sprint 37

July 3rd, 2017 by

Since we announced in the latest report, we decided to shorten our development sprints from three to only two weeks. As a natural consequence, this is the first report of a series of shorter ones. But shorter doesn’t have to mean less juicy! Keep reading and enjoy.

Displaying very long changelog

We got a bug report about YaST not responding when a very long package changelog was displaying in the package manager. It turned out that some packages have a huge change log history with several thousands entries (almost 5000 for the kernel-default package). That produces a very long table which takes long time to parse and display in the UI.

The solution is to limit the maximum number of displayed items in the UI. You cannot easily read that very long text anyway, for such a long text you would need some search functionality which the YaST UI does not provide.

Finding the limit, that magic number, was not easy as we want to be backward compatible and display as much as possible but still avoid that pathological cases with a huge list.

In the end we decided to go for a limit of 512 change entries. The vast majority of packages have way fewer entries, so you should not notice this clipping functionality. When the limit is reached a command to display the full log is displayed at the end so you can easily see the missing part when needed. (Hint: the widget supports the usual copy&paste functionality, you can copy (with Ctrl+C) the displayed command and paste it into a terminal window directly.)

Clipping the kernel changelog

Storage reimplementation: MD RAID support in the rewritten partitioner

In the previous report we told you we are rewriting the YaST partitioner to use the new storage stack and modern reusable CWM widgets under the hood while retaining exactly the same behavior and look&feel on the surface. We are reimplementing one feature at a time, and this sprint it was the MD RAID’s turn.

Now the partitioner displays current RAIDs, with details about them and the devices used to construct each RAID. If a picture is worth a thousand words, here you have 3,000 words:

RAID list in the rewritten partitioner

Devices in a given RAID in the rewritten partitioner

RAID details in the rewritten partitioner

No, you can’t have a separate partition for /var/lib/docker for CaaSP – so here you have it

Our brand new containers-oriented solutions, SUSE CaaSP and its openSUSE counterpart Kubic, need to have /var/lib/docker as a separate partition for several reasons. It was a separate Btrfs subvolume already, but that wasn't quite separate enough. 🙂

The problem was just that the automated storage proposal in the old YaST storage subsystem is not prepared for anything like this; it can deal with root, swap and optionally a separate home partition (or volume if using LVM). That's it. Extending the current syntax of the control.xml file to be able to specify arbitrary partitions and adapting the code of the old proposal to understand and handle this new specification was unfortunately almost impossible. Sadly, we have to admit the old code is hardly maintainable these days and not flexible enough to accommodate this kind of changes in a safe way.

This is one (out of many) reasons why we are currently in the process of rewriting that entire YaST storage subsystem, as you already know from many previous posts in this blog. But, as you also know, the new system will debut in SLES15 and openSUSE Leap 15.0, too late for the current SUSE CaaSP and openSUSE Kubic.

We decided we'd introduce a hack based in the old proposal, well knowing that hacks accumulated in code can develop their own life just like Dust Puppy. But we plan to kill that hack immediately once StorageNG arrives.

So the hack was to simply use the logic for the separate home partition and repurpose it, keeping all the respective parameters in control.xml and introducing yet another one called home_path where the actual mount point for that partition can be specified — in this case /var/lib/docker. The tradeoff is that there can be no separate /home anymore in parallel to that.

That "feature" should not be used outside of that very specific use case in CaaSP and we even considered the possibility of not documenting it too publicly to avoid misuse. But we are living the open source spirit and whatever we do, we do in public. Even if it's the (quite embarrassing) fact that we consider changes to certain parts of our own code too risky. But again, that's why we are pushing the storage layer reimplementation (Storage-NG) so hard: we want to regain control over that part.

Storage reimplementation: custom partitioning with AutoYaST

And talking about the new storage layer and our previous posts, you already know we are working hard to integrate it with AutoYaST. For the time being, custom partitioning layouts are supported, but only using plain partitions and LVM. Other features, like RAID or Btrfs subvolumes support, are still missing.

A nice thing about the new code is that it relies as much as possible on the new storage layer. On older versions, AutoYaST implemented some logic on its own and that caused some unexpected troubles. Fortunately, that is not the case anymore, and the new code looks way easier to extend and maintain.

YaST does not write directly in /etc/vconsole.conf anymore

When configuring the system keyboard, YaST used to write the keyboard map configuration directly in the /etc/vconsole.conf file. However, this approach is no longer appropriated since it may cause undesired effects to other tools. Now YaST uses the Systemd tool localectl to set the keyboard map in /etc/vconsole.conf, instead of writing in it directly. Another step to make YaST a good citizen of the Systemd world.

Storage reimplementation: named RAID arrays

If you use MD RAID arrays you probably know there are two ways of identifying them – by number or assigning a meaningful name to them. Named arrays use device names like /dev/md/<name> instead of /dev/md<number>.

During this sprint, we taught the new libstorage how to create and manage named RAID array, in addition to the already supported numbered ones. If the user decides so, the MD RAID name is used in fstab instead of the UUID (which was the only option with the old libstorage). We also made sure to improve the behavior in several scenarios, so we consider some bugs of the old storage to be fixed (or obsoleted, if you prefer) with storage-ng.

Linux also supports names of the form /dev/md_<name>. The new library is also able to handle this format, but the feature is intentionally disabled and documented to be unsupported because other parts of the system could not be 100% verified to work in that scenario. And we take quality assurance very seriously before labeling a feature as “supported”.

If you are not happy enough with the screenshots showing the RAID support in the partitioner, here you have more pictures. But, as usual with stuff implemented in the library, here “pictures” doesn’t mean screenshots, but fancy automatically generated graphs.

Stay tuned

Of course there are a lot of other things we did during the last two weeks, although some of them were considered not interesting enough for this report or were not finished on time. We are already working in finishing the unfinished stuff and implementing new exciting improvements. And the bright side is that you only have to wait two weeks to know more… so stay tuned.